

Carbohydrate Research 276 (1995) 437-441

Note

The β -D-Gal pNAc- $(1 \rightarrow 3)$ -D-Gal p linkage through the oxazoline glycosylation method

Diego Colombo a,*, Luigi Panza b, Fiamma Ronchetti a

^a Dipartimento di Chimica e Biochimica Medica, Università di Milano, Via Saldini 50, I-20133 Milan, Italy
^b Dipartimento di Chimica Organica e Industriale, Università di Milano, Via Venezian 21, I-20133 Milan, Italy

Received 13 March 1995; accepted 3 May 1995

Keywords: Oxazoline; 2-Acetamido-2-deoxy-D-galactose; Glycosylation; β -Linkage; Globo-H

The disaccharide β -D-Gal pNAc- $(1 \rightarrow 3)$ - α -D-Gal p is a component of some important naturally occurring oligosaccharides such as the Forssman pentasaccharide [1], the stage-specific embryonic antigen 3 (SSEA 3) pentasaccharide [2], and the tumor associated antigen Globo-H hexasaccharide [3].

Synthetic work has been performed [1,2,4] aimed towards the synthesis of such a disaccharide moiety, which requires as glycosyl donors, 2-amino-2-deoxy-galactose derivatives properly protected on their amino group. In these cases a 2-phthalimido or a 2-azido derivative was used, implying further synthetic steps after the formation of the β -glycosyl linkage, in order to restore the required 2-acetamido functionality.

Among the methods used in the synthesis of the related disaccharide β -D-Glc pNAc- $(1 \rightarrow 3)$ - α -D-Gal p is the oxazoline procedure [4], which results directly in the desired product. This methodology is now applied to obtain the β -D-Gal pNAc- $(1 \rightarrow 3)$ -D-Gal p linkage.

As we are currently engaged in the conformational analysis [5,6] of fragments of the Globo-H hexasaccharide, we planned to use the oxazoline method to obtain one such fragment, the disaccharide β -D-Gal pNAc-(1 \rightarrow 3)- α -D-Gal p-1-O-Pr (8).

The glycosyl donor 4 was obtained (Scheme 1) starting from allyl 2-acetamido-2-de-oxy-4,6-di-O-pivaloyl- β -D-galactopyranoside (1) [7] through acetylation followed by catalytic isomerization [8] of the allyl group and treatment with iodine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) [9], in an overall yield of about 50%. The oxazoline 4

^{*} Corresponding author.

was then allowed to react with allyl 2,4,6-tri-O-benzyl- α -D-galactopyranoside 5 [10] in dichloromethane at room temperature using trimethylsilyl trifluoromethanesulfonate (Me₃SiOTf) as the promoter [11].

In this way, a satisfactory 79% yield of the disaccharide **6** was obtained, so demonstrating the efficiency of the oxazoline procedure for the formation of this linkage.

Compound 6 was then conventionally deprotected by Zemplén deacylation and catalytic hydrogenolysis to give, through 7, the disaccharide β -D-Gal pNAc- $(1 \rightarrow 3)$ - α -D-Gal p as the propyl glycoside 8 suitable for conformational studies.

1. Experimental

General methods.—All reagents, except (cycloocta-1,5-diene)bis(methyl diphenylphosphine)iridium hexafluorophosphate (Alfa), were purchased from Aldrich. Reagents and dried solvents were added via oven-dried syringes through septa. All reactions were monitored by TLC on Silica Gel 60 F-254 plates (E. Merck) with detection by spraying with 50% $\rm H_2SO_4$ solution. Flash column chromatography was performed on Silica Gel 60 (230–400 mesh, E. Merck). Uncorrected melting points were determined on a Büchi apparatus. Optical rotations were determined on a Perkin–Elmer 241 polarimeter in a 1-dm cell at 20°C. $^1\rm H$ NMR spectra were recorded with a Bruker AM-500 instrument. Chemical shifts are referenced to HDO (δ 4.55) for compound 8 in 0.04 M D₂O solution at 303 K. All evaporations were carried out under reduced pressure at 40°C.

Allyl 2-acetamido-3-O-acetyl-2-deoxy-4,6-di-O-pivaloyl-β-D-galactopyranoside (2). —Compound 1 [7] (600 mg, 1.40 mmol) was conventionally acetylated to afford, after flash chromatography (1:1 hexane–EtOAc), 2 (640 mg, 97%); mp 129–130°C (from hexane); [α]_D –13.3° (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 5.84 (m, 1 H, -CH=), 5.57 (d, 1 H, $J_{2,NH}$ 8.5 Hz, NH), 5.33 (d, 1 H, $J_{3,4}$ 3.5 Hz, H-4), 5.28 (dd, 1 H, $J_{2,3}$ 11.0 Hz, H-3), 5.24, 5.16 (2 m, 2 H, = CH_2), 4.73 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1), 4.31 (m, 1 H, OC H_a H-), 4.13 (dd, 1 H, $J_{6a,6b}$ 11.0, $J_{5,6a}$ 7.0 Hz, H-6a), 4.06 (m, 1 H, OC H_b H-), 4.04 (dd, 1 H, $J_{5,6b}$ 7.0 Hz, H-6b), 3.94 (dd, 1 H, H-5), 3.91 (ddd, 1 H, H-2), 1.93, 1.92 (2 s, 6 H, 2 Ac), 1.22 and 1.14 (2 s, 18 H, 2 tert-BuCO). Anal. Calcd for $C_{23}H_{37}O_9N$: C, 58.58; H, 7.91; N, 2.97. Found: C, 58.32; H, 8.02; N, 3.07.

1-Propenyl 2-acetamido-3-O-acetyl-2-deoxy-4,6-di-O-pivaloyl-β-D-galactopyranoside

(3).—To a solution of 2 (620 mg, 1.32 mmol) in dry THF (40 mL), a catalytic amount of (cycloocta-1,5-diene)bis(methyldiphenylphosphine)iridium hexafluorophosphate was added. The solution was degassed and left for ca. 1 min under H₂ until the orange colour turned yellow. The solution was degassed again and left under N2 for 1 h (TLC 1:1 hexane-EtOAc). After evaporation of the solvent the residue was dissolved in CH2Cl2, washed with a saturated aq solution of NaHCO3 and with water, and dried under reduced pressure. Flash chromatography (2:3 hexane-EtOAc) of the crude product afforded the propenyl derivative 3 (572 mg, 92%); mp 149-150°C (from hexane); $[\alpha]_D + 3.3^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 6.17 (m, 1 H, OCH=), 5.39-5.32 (m, 3 H, H-3, H-4 and NH), 5.11 (m, 1 H, =CH-), 4.96 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1), 4.15 (dd, 1 H, $J_{6a,6b}$ 11.0, $J_{5,6a}$ 7.0 Hz, H-6a), 4.06 (dd, 1 H, $J_{5,6b}$ 7.0 Hz, H-6b), 4.01 (dd, 1 H, H-5), 3.92 (ddd, 1 H, $J_{2,3}$ 11.0, $J_{2,NH}$ 8.5 Hz, H-2), 1.95, 1.93 (2 s, 6 H, 2 Ac), 1.51 (m, 3 H, =CH-C H_3), 1.23 and 1.15 (2 s, 18 H, 2 tert-BuCO). Anal. Calcd for C₂₃H₃₇O₉N: C, 58.58; H, 7.91; N, 2.97. Found: C, 58.61; H, 7.85; N, 2.90. 2-Methyl-(3-O-acetyl-1,2-dideoxy-4,6-di-O-pivaloyl- α -D-galactopyrano)-[2,1-d]-2oxazoline (4).—Compound 3 (556 mg, 1.18 mmol) was dissolved in dry THF (16 mL) under N_2 ; I_2 (594 mg, 2.34 mmol) and 5.2 mL of a 10% (v/v) solution of DBU (3.34 mmol) in THF were added. After 15 min at room temperature (TLC 85:15 toluene-MeOH), the mixture was diluted with CHCl₃ and washed with 5% K₂S₂O₃ solution, water, dried (Na₂SO₄) and the solvent evaporated. Flash chromatography (85:15 toluene-MeOH) of the residue afforded 4 (264 mg, 54%); mp 112-113°C (from hexane); $[\alpha]_D + 84.1^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 5.94 (d, 1 H, $J_{1,2}$ 6.5 Hz, H-1), 5.46 (dd, 1 H, $J_{3,4}$ 3.0, $J_{4,5}$ 3.0 Hz, H-4), 4.88 (dd, 1 H, $J_{2,3}$ 7.0 Hz, H-3), 4.26 (ddd, 1 H, $J_{5,6a}$ 7.0, $J_{5,6b}$ 7.0 Hz, H-5), 4.18 (dd, 1 H, $J_{6a,6b}$ 11.0 Hz, H-6a), 4.02 (dd, 1 H, H-6b), 3.95 (ddq, 1 H, $J_{2,CH}$, 1.5 Hz, H-2), 2.02 (d, 3 H, -C H_3), 2.01 (s, 3 H, Ac),

Allyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-4,6-di-O-pivaloyl- β -D-galactopyranosyl)-2,4,6-tri-O-benzyl- α -D-galactopyranoside (6).—To a mixture of 5 [10] (294 mg, 0.60 mmol) in dry CH₂Cl₂ (6 mL) and powdered molecular sieves 4 Å, 5.2 mL of a 2.4% (v/v) solution of Me₃SiOTf (0.64 mmol) in dry CH₂Cl₂, and a solution of 4 (248 mg, 0.60 mmol) in dry CH₂Cl₂ (6 mL) were added. After 18 h at room temperature (TLC 1:1 toluene–EtOAc), the reaction was filtered and the filtrate was washed with a saturated aq NaHCO₃ solution, H₂O, dried (Na₂SO₄) and the solvent evaporated. Flash

1.22 and 1.16 (2 s, 18 H, 2 tert-BuCO). Anal. Calcd for C₂₀H₃₁O₈N: C, 58.10; H, 7.56;

N, 3.39. Found: C, 58.81; H, 7.49; N, 3.23.

chromatography (1:1 toluene–EtOAc) of the residue afforded **6** (430 mg, 79%); mp 182–183°C (from hexane–CH $_2$ Cl $_2$); [α] $_0$ + 5.4° (c 0.9, CHCl $_3$); 1 H NMR (CDCl $_3$): δ 7.37–7.20 (m, 15 H, Ph-H), 5.87 (m, 1 H,–CH=), 5.32 (d, 1 H, $J_{3',4'}$ 3.5 Hz, H-4'), 5.25, 5.15 (2 m, 2 H, =C H_2), 5.11 (d, 1 H, $J_{\text{NH},2'}$ 10.0 Hz, NH), 4.98 (dd, 1 H, $J_{3',2'}$ 11.0 Hz, H-3'), 4.96–4.34 (m, 6 H, Ph-C H_2 –), 4.81 (d, 1 H, $J_{1',2'}$ 8.5 Hz, H-1'), 4.79 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 4.32 (ddd, 1 H, H-2'), 4.16–3.91 (m, 8 H, H-2, H-3, H-4, H-5', H-6'a, H6'b and OC H_2 –), 3.89 (dd, 1 H, $J_{5.6a}$ 6.5 Hz, $J_{5.6b}$ 6.5 Hz, H-5), 3.48 (dd, 1 H, $J_{6a,6b}$ 10.0 Hz, H-6a), 3.34 (dd, 1 H, H-6b), 1.93, 1.69 (2 s, 6 H, 2 Ac), 1.21 and 1.14 (2 s, 18 H, 2 tert-BuCO). Anal. Calcd for $C_{50}H_{65}O_{14}N$: C, 66.43; H, 7.25; N, 1.55. Found: C, 66.19; H, 7.05; N, 1.42.

Allyl 3-O-(2-acetamido-2-deoxy- β -D-galactopyranosyl)-2,4,6-tri-O-benzyl- α -Dgalactopyranoside (7).—To a solution of 6 (416 mg, 0.46 mmol) in MeOH (8 mL), 2.6 mL of 1.3 M MeONa in MeOH were added. After 3 h at reflux (TLC 95:5 EtOAc-MeOH) the reaction mixture was neutralized with Dowex-50 × 8 (H⁺), filtered and the solvent evaporated. Flash chromatography (95:5 EtOAc-MeOH) of the residue afforded 7 (294 mg, 92%); mp 87–88°C (from hexane–EtOAc; $[\alpha]_D + 25.5^\circ$ (c 0.9, CHCl₃); ¹H NMR (CDCl₃): δ 7.37–7.20 (m, 15 H, Ph–H), 6.16 (d, 1 H, $J_{NH2'}$ 3.0 Hz, NH), 5.88 (m, 1 H, -CH =), 5.27, 5.17 (2 m, 2 H, $=CH_2$), 4.98 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 4.92-4.34 (m, 6 H, Ph-C H_2 -), 4.54 (d, 1 H, $J_{1'.2'}$ 8.5 Hz, H-1'), 4.13 (m, 1 H, OCH₂H₋), 4.11 (dd, 1 H, J_{2,3} 10.0 Hz, H-2), 4.08 (dd, 1 H, J_{3,4} 2.0 Hz, H-3), 4.04 (br d, 1 H, H-4), 3.99 (dd, 1 H, $J_{5',6'a}$ 5.5, $J_{6'a,6'b}$ 11.5 Hz, H-6'a), 3.95 (dd, 1 H, $J_{5,6a}$ 6.0, $J_{5,6b}$ 6.0 Hz, H-5), 3.92 (m, 1 H, OC H_b H-), 3.90 (dd, 1 H, $J_{5',6'b}$ 4.5 Hz, H-6'b), 3.89 (d, 1 H, $J_{3',4'}$ 3.5 Hz, H-4'), 3.72 (ddd, 1 H, $J_{2',3'}$ 10.0 Hz, H-2'), 3.56 (dd, 1 H, H-3'), 3.56 (dd, 1 H, H-5'), 3.50 (dd, 1 H, $J_{6a,6b}$ 9.5 Hz, H-6a), 3.41 (dd, 1 H, H-6b) and 1.59 (s, 3 H, Ac). Anal. Calcd for C₃₈H₄₇O₁₁N: C, 65.79; H, 6.83; N, 2.02. Found: C, 65.27; H, 6.97; N, 2.26.

Propyl 3-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-α-D-galactopyranoside (**8**). —To a solution of **7** (278 mg, 0.40 mmol) in MeOH (20 mL), 140 mg of 10% Pd/C were added and the mixture was stirred for 4 h under H₂ atmosphere (TLC 3:3:1 EtOAc-*i*PrOH-H₂O). The mixture was filtered on Celite and the solvent evaporated. The residue was dissolved in water and then lyophilized to give **8** (138 mg, 81%); mp 215–218°C (dec) (from EtOAc); [α]_D + 89.2° (c 0.9, MeOH); ¹H NMR (D₂O): δ 4.73 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 4.46 (d, 1 H, $J_{1',2'}$ 8.5 Hz, H-1'), 4.01 (d, 1 H, $J_{3,4}$ 3.0 Hz, H-4), 3.79–3.71 (m, 4 H, H-5, H-4', H-2' and H-3), 3.69 (dd, 1 H, $J_{2,3}$ 10.0 Hz, H-2), 3.61 (dd, 1 H, $J_{5',6'a}$ 7.5, $J_{6'a,6'b}$ 11.5 Hz, H-6'a), 3.57 (dd, 1 H, $J_{5',6'b}$ 4.5 Hz, H-6'b), 3.56 (dd, 1 H, $J_{2',3'}$ 10.0, $J_{3',4'}$ 3.5 Hz, H-3'), 3.54 (d, 2 H, $J_{5,6}$ 6.5 Hz, H₂-6), 3.51–3.45 (m, 2 H, OC H_a H and H-5'), 3.31 (m, 1 H, OC H_b H–) 1.86 (s, 3 H, Ac), 1.45 (m, 2 H, $-CH_2$ –) and 0.74 (t, 3 H, $-CH_3$). Anal. Calcd for C₁₇H₃₁O₁₁N: C, 48.00; H, 7.34; N, 3.29. Found: C, 48.39; H, 7.90; N, 3.66.

Acknowledgements

We gratefully acknowledge financial support provided by the Italian M.U.R.S.T. (Rome) and Consiglio Nazionale delle Ricerche (Rome). We also express our thanks to Prof. Lucio Toma for helpful discussions.

References

- G. Magnusson, U. Nilsson, A.K. Ray, and K.G. Taylor, A.C.S. Symp. Ser., 519 (1993) 92–110, and references cited therein.
- [2] S. Nunomura and T. Ogawa, Tetrahedron Lett., 29 (1988) 5681-5684, and references cited therein.
- [3] E.G. Bremer, S.B. Levery, S. Sonnino, R. Ghidoni, S. Canevari, R. Kannagi, and S. Hakomori, J. Biol. Chem., 259 (1984) 14773–14777.
- [4] J. Banoub, P. Boullanger, and D. Lafont, Chem. Rev., 92 (1992) 1167-1195, and references cited therein.
- [5] L. Toma, P. Ciuffreda, D. Colombo, F. Ronchetti, L. Lay, and L. Panza, Helv. Chim. Acta, 77 (1994) 668-678.
- [6] L. Toma, D. Colombo, F. Ronchetti, L. Panza, and G. Russo, Helv. Chim. Acta, in press.
- [7] L. Lay, F. Nicotra, L. Panza, G. Russo, and E. Adobati, Helv. Chim. Acta, 77 (1994) 509-514.
- [8] J.J. Oltvoort, C.A.A. van Boeckel, J.H. de Koning, and J.H. van Boom, Synthesis, (1981) 305-308.
- [9] M.A. Nashed and L. Anderson, J. Chem. Soc., Chem. Commun., (1982) 1274-1276.
- [10] M.A. Nashed, M.S. Chowdhary, and L. Anderson, Carbohydr. Res., 102 (1982) 99-110.
- [11] T. Ogawa, K. Beppu, and S. Nakabayashi, Carbohydr. Res., 93 (1981) C6-C9.